
Optimization workshop

Intel® VTune™ Amplifier and Intel® Advisor

Kevin O’Leary, Technical Consulting Engineer

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Changing Hardware Affects Software Development

More cores and wider vector registers mean more threads and more maximum
performance! … but you need to need to write software that takes advantage of
those cores and registers.

Intel® Xeon®
Processor 64-bit

5100
series

5500
series

5600
series

E5-2600
E5-2600

V2
E5-2600

V3
E5-2600

V4
Platinum

8180

Cores 1 2 4 6 8 12 18 22 28

Threads 2 2 8 12 16 24 36 44 56

SIMD Width 128 128 128 128 256 256 256 256 512

More threads means
more potential speedup.

2

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

The Agenda

Threading

Tuning to the Architecture

Vectorization

Optimization 101

Q & A ? ??

3

The uOp Pipeline

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Take advantage of compiler optimizations with the right flags.

Use optimized libraries, like Intel® Math Kernel Library (MKL).

Optimization 101

Linux* Windows* Description

-xCORE-AVX512 /QxCORE-AVX512 Optimize for Intel® Xeon® Scalable processors, including AVX-512.

-xCOMMON-AVX512 /QxCOMMON-AVX512 Alternative, if the above does not produce expected speedup.

-fma /Qfma Enables fused multiply-add instructions. (Warning: affects rounding!)

-O2 /O2 Optimize for speed (enabled by default).

-g /Zi Generate debug information for use in performance profiling tools.

• BLAS
• LAPACK
• ScaLAPACK
• Sparse BLAS
• Sparse Solvers
• Iterative
• PARDISO*
• Cluster Sparse Solver

Linear Algebra

• Multidimensional
• FFTW interfaces
• Cluster FFT

Fast Fourier Transforms

• Trigonometric
• Hyperbolic
• Exponential
• Log
• Power
• Root
• Vector RNGs

Vector Math

• Kurtosis
• Variation coefficient
• Order statistics
• Min/max
• Variance-

covariance

Summary Statistics

• Convolution
• Pooling
• Normalization
• ReLU
• Softmax

Deep Neural
Networks

• Splines
• Interpolation
• Trust Region
• Fast Poisson

Solver

And More…

4

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Adding Threading with Intel® Advisor

▪ Find good threading sites with the Survey analysis, then annotate the code
to tell Advisor how to simulate threading and locking.

▪ Use the Suitability analysis to predict threading performance and the
Dependencies analysis to check for correctness problems.

Predicted
program
speedup

Set hypothetical
environment details

to see effects.

Experiment with
what would happen
if you changed the

number or duration
of parallel tasks

without re-running
the analysis.

See how
each parallel

site would
scale on a

given
number of

CPUs.

5

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Using Intel® VTune™ Amplifier for Threading
Optimization
Use Threading analysis to see how well your
program is using its threads.

Each thread is displayed on the timeline, with
color coded activity.

▪ Coarse-grain locks indicate that your
program is effectively single threaded.

▪ Thread imbalance is when the application
isn’t using all the threads all the time.

▪ Lock contention means your program is
spending more time swapping threads out
than actually working.

Coarse-Grain Locks

Thread Imbalance

High Lock Contention

6

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

What is the uop Pipeline?
There are multiple steps to executing an instruction.

Modern CPUs pipeline instructions rather than performing all the steps for one
instruction before beginning the next instruction.

The pipeline can be divided into two sections.

▪ The Front End, which fetches instructions, decodes them, and allocates them to…

▪ The Back End, which executes the uops. Once completed, a uop is considered “retired.”

A Pipeline Slot is a representation of the hardware needed to process a uop.

The Front End can only allocate (and the Back End retire) so many uops per
cycle. This determines the number of Pipeline Slots. In general, there are four.

Fetch Decode Execute Access Memory Write-back

Fetch

Cycle 1

Decode

Fetch

Cycle 2

Execute

Decode

Fetch

Cycle 3

Access Mem.

Execute

Decode

Fetch

Cycle 4

Write-back

Access Mem.

Execute

Decode

Fetch

Cycle 5

Write-back

Access Mem.

Execute

Decode

Fetch

Cycle 6

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

UopUop 1Uop 2Uop 3Uop 4Uop 5Uop 6

…

7

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Pipeline Slot Categorization

Pipeline slots can be sorted into four
categories on each cycle.

Each category has an expected range
of values in a well tuned application.

Retiring
Bad

Speculation
Back-End

Bound
Front-End

Bound

uop
allocated?

uop ever
retired?

back end
stalled?

Yes No

Yes YesNo No
– Retiring
– Bad Speculation

– Back End Bound
– Front End Bound

App. Type:
Category

Client/Desktop Server/Database/
Distributed

High Performance
Computing

Retiring 20-50% 10-30% 30-70%

Bad Speculation 5-10% 5-10% 1-5%

Front End Bound 5-10% 10-25% 5-10%

Back End Bound 20-40% 20-60% 20-40%

8

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is the good category! You want as many of your slots in this category as
possible. However, even here there may be room for optimization.

EXECUTION UNIT RETIREMENT
uop

uop

uop

uop

Pipeline Slot Categorization:

9

Retiring

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This occurs when a uop is removed from the back end without retiring;
effectively, it’s cancelled, most often because a branch was mispredicted.

EXECUTION UNIT RETIREMENT
uop

uop

uop

uop

Pipeline Slot Categorization:

10

Bad Speculation

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is when the back end can’t accept uops, even if the front end can send
them, because it already contains uops waiting on data or long execution.

EXECUTION UNIT RETIREMENT

uop

uop

uop

uop

Pipeline Slot Categorization:

11

Back End Bound

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is when the front end can’t deliver uops even though the back end can take
them, usually due to delays in fetching code or decoding instructions.

EXECUTION UNIT RETIREMENT

uop

uop

Pipeline Slot Categorization:

12

Front End Bound

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Hotspots Analysis

The Tuning Process

Implement Solution

If Inefficient:

Find Hotspots
Intel® VTune™ Amplifier

Microarchitecture Exploration
Intel® VTune™ Amplifier

Determine EfficiencyFor Each
Hotspot

Microarchitecture Exploration
Memory Access Analysis

Vectorization Advisor

Intel® VTune™ Amplifier

Diagnose Bottleneck

Intel® Advisor

13

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Finding Hotspots

Use Hotspots analysis. Find where your program is spending the most time to
ensure optimizations have a bigger impact.

▪ The Summary tab shows a high-level overview of the most important data.

▪ The Bottom-up tab provides more
detailed analysis results.

– The total amount of time spent in
a function is divided up by how
many CPUs were active during
the time the function was running.

– Low confidence metrics are grayed
out: VTune uses statistical sampling
and may miss extremely small, fast portions of the program.

Find
Hotspots

Determine
Efficiency

Diagnose
Bottleneck

Implement
Solution

14

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 15

Determining Efficiency

Use Microarchitecture Exploration analysis. It’s preconfigured with:

▪ appropriate events and metric formulae for the architecture

▪ hardware-specific thresholds for highlighting potential problems in pink

Inefficiency can be caused by:

▪ Not retiring enough necessary instructions.

– Look for retiring rate lower than expected value.

▪ Retiring too many unnecessary instructions.

– Look for underuse of AVX or FMA instructions.

Find
Hotspots

Determine
Efficiency

Diagnose
Bottleneck

Implement
Solution

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® VTune™ Amplifier has hierarchical expanding metrics categorized by the
four slot types. You can follow the pink highlights down the subcategories to
identify the root cause. You can hover over a column to see a helpful tooltip.

Diagnosing the Bottleneck

We can’t cover all solutions today, but there’s more information in the Tuning Guides:
https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

Find
Hotspots

Determine
Efficiency

Diagnose
Bottleneck

Implement
Solution

16

https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Solutions Sampler
Back End Bound

Memory Bound

Core Bound

Cache Misses
• Block your data.
• Use software

prefetches.
• Consider Intel®

Optane™ DC
Persistent
Memory.

Remote Memory Access
• Affinitize/pin threads to cores.
• Use NUMA-efficient thread

schedulers like Intel®
Threading Building Blocks.

• Test whether performance
improves using Sub-NUMA
Cluster Mode.

Contested Access/Data Sharing
• Solve false sharing by padding variables to cache

line boundaries.
• Try to reduce actual sharing requirements.

Divider
• Use reciprocal-multiplication where possible.

Find
Hotspots

Determine
Efficiency

Diagnose
Bottleneck

Implement
Solution

17

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Understanding the Memory Hierarchy

LLC

LLC

LLC

LLC

Core

Core

Core

Core

System Agent

Integrated Graphics

Shared

SN
B

32KB
L1D

32KB
L1I

256KB
L2

Core

Core

Core

LLC

LLC

GPU

DRA
M

Memory & I/O

Data can be in any level of any core’s cache, or in
the shared L3, DRAM, or on disk.

Accessing data from another core adds another
layer of complexity

Cache coherence protocols – beyond the scope
of today’s lecture. But we will cover some issues
caused by this.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Why: Cache misses raise the CPI of an application. Focus on long-latency
data accesses coming from 2nd and 3rd level misses

Cache Misses

What Now: If either metric is highlighted for your hotspot, consider reducing misses:
▪ Change your algorithm to reduce data storage
▪ Block data accesses to fit into cache
▪ Check for sharing issues (See Contested Accesses)
▪ Align data for vectorization (and tell your compiler)
▪ Use streaming stores
▪ Use software prefetch instructions

“<memory level> Bound” = Percentage of cycles
when the CPU is stalled, waiting for data to come
back from <memory level>

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

• Back End bound is the most common bottleneck type for most applications.

• It can be split into Core Bound and Memory Bound

• Core Bound includes issues like not using execution units effectively and
performing too many divides.

• Memory Bound involves cache misses, inefficient memory accesses, etc.

• Store Bound is when load-store dependencies are slowing things down.

• The other sub-categories involve caching issues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

Categorizing Inefficiencies in the Memory Subsystem

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

VTune Amplifier Workflow Example- Summary View

High percentage of
L3 Bound cycles

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

VTune Amplifier Workflow Example- Bottom-Up View

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Focus on areas of
interest with “Zoom
In and Filter”

Fine-grained details
in Zoomed-in view

VTune Amplifier Workflow Example- Bottom-Up View

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

24

Memory Bound function.
44% of pipeline slots are
stalled.

DRAM and UPI
Bandwidth are low.

Double-click a function
for source view.

VTune Amplifier Workflow ExampleVTune Amplifier Workflow Example- Bottom-Up View

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

25

Metrics at a source line
granularity

Inefficient array access
pattern in nested loop

VTune Amplifier Workflow Example- Source View

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® Optane™ DC Persistent Memory

Determine whether your application can benefit from Intel® Optane™ DC
Persistent Memory without the hardware using Memory Consumption analysis.
Identify frequently accessed objects using a Memory Access analysis.

Non-Volatile Persistent Memory may not behave as expected. Errors can be
detected early using Intel® Inspector – Persistence Inspector.

Memory Mode App Direct Mode

Requires no special programming. Just turn it on
and see if it helps!

Requires the use of an API to manually control
memory allocation.

Not actually persistent. Acts like an extra layer of
cache between DRAM and disk.

Comes in Volatile (non-persistent) and Non-
Volatile (persistent) modes.

Hottest data should remain in DRAM while the
rest goes to persistent memory instead of disk.

Hottest and/or store-heavy objects should reside
in DRAM and the rest in persistent memory.

Note: Memory Consumption analysis is not currently available on Windows* operating systems. 26

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Solutions Sampler
Front End Bound

Front End Latency
• Use switches to reduce code size, such as /O1 or /Os.
• Use Profile-Guided Optimization (PGO) with the

compiler.
• For dynamically generated code, try co-locating hot

code, reducing code size, and avoiding indirect calls.

Bad Speculation

Branch Mispredicts
• Avoid unnecessary branching.
• Hoist popular branch targets.
• Use PGO with the compiler.

Machine Clears
• Check for lock

contention or
4k aliasing.

Retiring

You’re doing more work than you need to.
• Use FMAs. Compile with –fma or /Qfma and the

appropriate –x or /Qx option.
• Take advantage of vectorization with AVX-512!

Back End Bound

Memory Bound

Core Bound

Cache Misses
• Block your data.
• Use software

prefetches.
• Consider Intel®

Optane™ DC
Persistent
Memory.

Remote Memory Access
• Affinitize/pin threads to cores.
• Use NUMA-efficient thread

schedulers like Intel®
Threading Building Blocks.

• Test whether performance
improves using Sub-NUMA
Cluster Mode.

Contested Access/Data Sharing
• Solve false sharing by padding variables to cache

line boundaries.
• Try to reduce actual sharing requirements.

Divider
• Use reciprocal-multiplication where possible.

Find
Hotspots

Determine
Efficiency

Diagnose
Bottleneck

Implement
Solution

27

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

2012
Intel® Xeon™ Processor

E5-2600
formerly codenamed

Sandy Bridge

2013
Intel® Xeon™ Processor

E5-2600 v2
formerly codenamed

Ivy Bridge

2010
Intel® Xeon™ Processor

X5680
formerly codenamed

Westmere

2017
Intel® Xeon® Platinum Processor

81xx
formerly codenamed

Skylake Server

2014
Intel® Xeon™ Processor

E5-2600 v3
formerly codenamed

Haswell

2016
Intel® Xeon™ Processor

E5-2600 v4
formerly codenamed

Broadwell

Vectorized
& Threaded

Threaded

Vectorized
Serial

130x

Vectorization 101

Vector registers and SIMD (Single Instruction Multiple Data)
instructions allow a CPU to do multiple operations at once.

▪ Use /QxCORE-AVX512 or –xCORE-AVX512 compiler flags.
– If you don’t see the expected improvement, try COMMON-AVX512 instead.

“Automatic” Vectorization Is Not Enough
Explicit pragmas and optimization are often required

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Configurations for
2010-2017
Benchmarks

at the end of this
presentation

17 53 37 4

63 -9 42 81

80 44 79 85

28

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® Advisor

Intel® Advisor is a thread prototyping and vectorization optimization tool. Start
with a Survey analysis.

Are your loops
vectorized?

Vectorized Loop
Unvectorized Loop

What’s dragging your
performance down?

What should you do next?

How much
time is a

given loop
taking?

What’s preventing
vectorization?

Are you using the
latest instruction set?

How efficient is your
vectorization?

29

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Trip Counts…

Trip Counts analysis shows you loop trip counts and call counts. High call
counts amplify the importance of tuning a loop. Scalar trip counts that aren’t
divisible by vector length cause remainder loops.

This is especially important with the long vector registers of AVX-512!

Loops with peels and/or
remainders can be expanded.

This loop’s scalar trip count was 1326,
which doesn’t divide evenly by 4.

1326/4=331.5

You can see which component
loops are what type in this column.

Poor efficiency + high call count
= major performance penalty!

30

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

… and FLOPS

Trip Counts analysis can also collect FLOP and Mask Utilization data.

▪ Floating-point Operations are used to calculate FLOPS (Floating Point Operations Per
Second)… but Integer operations are also supported!

FLOPS and IntOPS are computation-specific performance measurements.
Collecting them produces a Roofline chart, a visual representation of
performance relative to hardware limits.

▪ The horizontal axis is Arithmetic Intensity, a
measurement of FLOPs per byte accessed.
The vertical axis is performance.

▪ The dots are loops. The lines are hardware
limitations; horizontal lines are compute limits
and diagonal lines are memory limits.

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

31

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

VNNI usage verification by Intel Advisor

Easily identify VNNI
usage in the

functions/loops

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Roofline

The Roofline chart can be an effective means of identifying bottlenecks, and
determining what optimizations to make where, for maximum effect.
It is a good indicator of:

▪ How much performance is left on
the table

▪ Which loops take the most time

▪ Which loops are worth optimizing

▪ Likely causes of performance
bottlenecks

▪ What to investigate next

Roofline Video: https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
Roofline Article: https://software.intel.com/en-us/articles/intel-advisor-roofline

33

https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
https://software.intel.com/en-us/articles/intel-advisor-roofline

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Memory Access Patterns & Dependencies

Memory Access Patterns (MAP) and Dependencies are specialized analysis
types. Use them when Advisor recommends.

▪ MAP detects inefficient strides and mask utilization information.

▪ Dependencies determines whether it’s safe to force vectorization in a loop that was left
scalar due to the compiler detecting a potential dependency.

34

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 35

Intel® Advisor GUI

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 36

Looking for detail:

1. Collect survey and tripcounts data [Roofline]

▪ Investigate application place within roofline model

▪ Determine vectorization efficiency and opportunities
for improvement

2. Collect memory access pattern data

▪ Determine data structure optimization needs

3. Collect dependencies

▪ Differentiate between real and assumed issues
blocking vectorization

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.

In a rush: Collect Survey data and analyze loops iteratively

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 37

It uses two simple metrics

▪ Flop count

▪ Bytes transferred

What is the Roofline Model?
Characterization of your application performance in the context of the hardware

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

Vectorization,
Threading

FLOPS

Arithmetic Intensity
FLOPS/Byte

Optimization of
Memory Access

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 38

Roofline Model in Intel® Advisor

Intel® Advisor implements a Cache Aware Roofline Model (CARM)

▪ “Algorithmic”, “Cumulative (L1+L2+LLC+DRAM)” traffic-based

▪ Invariant for the given code / platform combination

How does it work ?

▪ Counts every memory movement

▪ Instrumentation - Bytes and Flops

▪ Sampling - Time

Advantage of CARM Disadvantage of CARM

No Hardware counters Only vertical movements !

Affordable overhead (at worst =~10x) Difficult to interpret

Algorithmic (cumulative L1/L2/LLC) How to improve performance ?

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 39

Roofline Chart in Intel® Advisor

Dots represent
profiled loops
and functions

Roof values are
measured

High level of
customization

Intel® Confidential — INTERNAL USE ONLY

Tuning a Small Example with Roofline
A Short Walk Through the Process

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 41

Example Code
A Short Walk Through the Process

The example loop runs through an array of
structures and does some generic math on some
of its elements, then stores the results into a
vector. It repeats this several times to artificially
pad the short run time of the simple example.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 42

Finding the Initial Bottleneck
A Short Walk Through the Process

The loop is initially under
the Scalar Add Peak. The
Survey confirms the loop
is not vectorized.

The “Why No
Vectorization?” column
reveals why.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 43

Overcoming the Initial Bottleneck
A Short Walk Through the Process

The recommendations tab
elaborates: the dependency is
only assumed.

Running a Dependencies
analysis confirms that it’s false,
and recommends forcing
vectorization with a pragma.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 44

The Second Bottleneck
A Short Walk Through the Process

Adding a pragma to force the
loop to vectorize successfully
overcomes the Scalar Add Peak.
It is now below L3 Bandwidth.

The compiler is not making the
same algorithmic optimizations,
so the AI has also changed.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 45

Diagnosing Inefficiency
A Short Walk Through the Process

While the loop is now vectorized, it is
inefficient. Inefficient vectorization
and excessive cache traffic both often
result from poor access patterns, which can be confirmed with a MAP analysis.

Array of Structures is an inefficient data layout, particularly for vectorization.

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4AoS

SoA

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 46

A New Data Layout
A Short Walk Through the Process

Changing Y to SoA layout
moved performance up
again.

Either the Vector Add Peak
or L2 Bandwidth could be
the problem now.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 47

Improving the Instruction Set
A Short Walk Through the Process

Because it’s so close to an intersection, it’s hard to tell whether the Bandwidth
or Computation roof is the bottleneck. Checking the Recommendations tab
guides us to recompile with a flag for AVX2 vector instructions.

Before

After

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 48

Assembly Detective Work
A Short Walk Through the Process

The dot is now sitting directly on the Vector Add Peak, so it is meeting but not
exceeding the machine’s vector capabilities. The next roof is the FMA peak. The
Assembly tab shows that the loop is making good use of FMAs, too.

The Code Analytics tab reveals an
unexpectedly high percentage of
scalar compute instructions.

The only
scalar math
op present
is in the
loop control.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 49

One More Optimization
A Short Walk Through the Process

Scalar instructions in the loop
control are slowing the loop down.

Unrolling a loop duplicates its body
multiple times per iteration, so
control makes up proportionately
less of the loop.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 50

Recap
A Short Walk Through the Process

Original scalar loop.

17.156s

Vectorized with a pragma.

9.233s

Switched from AoS to SoA.

4.250s

Compiled for AVX2.

3.217s

Unrolled with a pragma.

2.406s

Intel® Confidential — INTERNAL USE ONLY

Integrated Roofline

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 52

Beyond CARM: Integrated Roofline

New capability in Intel® Advisor: use simulation based method to estimate
specific traffic across memory hierarchies.

▪ Record load/store instructions

▪ Use knowledge of processor cache structure and size

▪ Produce estimates of traffic generated at each level by individuals
loops/functions

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 53

Integrated Roofline Representation

Choose
memory level

Hover for details

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 58

New and improved summary

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 59

Roofline compare

Intel® Confidential — INTERNAL USE ONLY

Flow Graph Analyzer

60

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Flow Graph Analyzer
Workflows: Create, Debug, Visualize and Analyze

Design mode
• Allows you to create a graph

topology interactively
• Validate the graph and explore

what-if scenarios
• Add C/C++ code to the node body
• Export C++ code using Threading

Building Blocks (TBB) flow graph
API

Analysis mode
• Compile your application (with

tracing enabled)
• Capture execution traces during the

application run
• Visualize/analyze in Flow Graph

Analyzer
• Works with TBB and OpenMP

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Summary
2nd gen Intel® Xeon® Scalable processors have more performance capacity than
ever before, but code needs to be written to take advantage of it!

▪ Build a good foundation

– Use the right compiler flags and libraries

– Write your application to make good use of multithreading

– Use Intel® Advisor to plan your threading

– Use Intel® VTune™ Amplifier’s Threading analysis to optimize your threading

▪ Tune to the architecture with performance profiling tools.

– Find your hotspots with VTune™ Amplifier’s Hotspots analysis type.

– Diagnose your bottlenecks with the Microarchitecture Exploration analysis type

– Dig deeper with a Memory Access analysis or Intel® Advisor

– Implement solutions based on your findings

– Use Intel® Inspector to make good use of Intel® Optane™ DC Persistent Memory

62

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 63

Get the Most from Your Code Today with Intel® Tech.Decoded

Discover Intel’s vision for
key development areas.

Big Picture Videos

Essential Webinars

Gain strategies, practices
and tools to optimize
application and solution
performance.

Learn how to do specific
programming tasks using
Intel® tools.

Quick Hit How-To Videos

Visual Computing

Code Modernization

Systems & IoT

Data Science

Data Center & Cloud

TOPICS:

Visit TechDecoded.intel.io to learn how to
put key optimization strategies into practice
with Intel development tools.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Performance results are based on testing from 2010 thru 2017 and may not reflect all publicly available security updates. See configuration disclosure for
details. No product or component can be absolutely secure.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

64

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice. Notice revision #20110804

Performance measured in Intel Labs by Intel employees

Configurations for 2010-2017 Benchmarks

Platform

Unscaled
Core

Frequency
Cores/
Socket

Num
Sockets

L1
Data

Cache
L2

Cache
L3

Cache Memory
Memory

Frequency
Memory
Access

H/W
Prefetchers

Enabled
HT

Enabled
Turbo

Enabled C States
O/S

Name Operating System Compiler Version
Intel® Xeon™

X5680 Processor
3.33 GHZ 6 2 32K 256K 12 MB 48 MB 1333 MHz NUMA Y Y Y Disabled

Fedora
20

3.11.10-301.fc20 icc version 17.0.2

Intel® Xeon™ E5
2690 Processor

2.9 GHZ 8 2 32K 256K 20 MB 64 GB 1600 MHz NUMA Y Y Y Disabled
Fedora

20
3.11.10-301.fc20 icc version 17.0.2

Intel® Xeon™ E5
2697v2 Processor

2.7 GHZ 12 2 32K 256K 30 MB 64 GB 1867 MHz NUMA Y Y Y Disabled
RHEL

7.1
3.10.0-229.el7.x86_64 icc version 17.0.2

Intel® Xeon™ E5
2600v3 Processor

2.2 GHz 18 2 32K 256K 46 MB 128 GB 2133 MHz NUMA Y Y Y Disabled
Fedora

20
3.15.10-

200.fc20.x86_64
icc version 17.0.2

Intel® Xeon™ E5
2600v4 Processor

2.3 GHz 18 2 32K 256K 46 MB 256 GB 2400 MHz NUMA Y Y Y Disabled
RHEL

7.0
3.10.0-123. el7.x86_64 icc version 17.0.2

Intel® Xeon™ E5
2600v4 Processor

2.2 GHz 22 2 32K 256K 56 MB 128 GB 2133 MHz NUMA Y Y Y Disabled
CentOS

7.2
3.10.0-327. el7.x86_64 icc version 17.0.2

Intel® Xeon®
Platinum 81xx

Processor
2.5 GHz 28 2 32K 1024K 40 MB 192 GB 2666 MHz NUMA Y Y Y Disabled

CentOS
7.3

3.10.0-
514.10.2.el7.x86_64

icc version 17.0.2

Platform Hardware and Software Configuration

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

WSM

SNB

IVB

HSW

BDW

BDW

SKX

65

http://www.intel.com/performance

